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Energy  e s t ima te s  a r e  obtained for  the c r i t i ca l  Reynolds number s  fo r  a number  of flows having 
veloci ty  p rof i l es  with an inflection point. F lows with a cubic veloci ty  profi le ,  a f ree  submerged  
jet,  and a jet  in a channel a r e  examined.  It has been detected that the energy  e s t i m a t e s  a r e  not 
m o r e  than two- to threefo ld  l e s s  than the cor responding  c r i t i ca l  Reynolds numbers  computed 
by l i nea r  theory .  

1. There  exis t  two approaches  to the invest igat ion of the s tabi l i ty  of l a m i n a r  s t a t ionary  flows [1]. In 
l Inea r  s tabi l i ty  theory  the behav io r  of smal l  pe r tu rba t ions  is  examined and conditions under  which these p e r -  
tu rba t ions  grow with t ime  a r e  studied. The energy  method p e r m i t s  the de te rmina t ion  of under  what condi- 
t ions a r b i t r a r y  pe r tu rba t ions  will damp out monotonely.  Both these  approaches  p e r m i t  ex t rac t ion  of bands 
of p a r a m e t e r s  between the explicit  s tabi l i ty  and explici ty instabi l i ty  domains  within which the t rans i t ion  f r o m  
the l amina r  to the turbulent  flow modes  or  to another  l a m i n a r  flow mode is  p e r f o r m e d .  This  " theore t i ca l  
band" turns  out to be l a rge  fo r  p r e s s u r e  flows in tubes and channels .  Thus,  fo r  example,  for  Poiseui l le  flow 
in a plane channel, the energy  ana lys i s  yields  R**=49.9 [2] and the l i nea r  theory  R,~ 5772 [3], while the 
expe r imen ta l  value of the c r i t i ca l  Reynolds number  is  R ,  ~1000 (the Reynolds number  is  he re  de te rmined  
ove r  half  the width of the channel and the m a x i m u m  s t r e a m  velocity).  The so -ca l l ed  "paradoxica l"  effect  
of the v i scos i ty  is cha r ac t e r i s t i c  in these  examples ,  i .e . ,  the v i scos i ty  r e su l t s  here  not only in energy  d is -  
s ipat ion but a l so  contr ibuted to the or iginat ion of growing Tollmien-Scb_licting waves .  The si tuat ion is  dif-  
fe ren t  ff the instabi l i ty  is  due to the destabi l iz ing influence of definite m a s s  fo rces .  F o r  example ,  for  a con- 
vec t ive  ins tabi l i ty  of the flow of a fluid heated f r o m  below [4], the c r i t i ca l  p a r a m e t e r s  computed by an en-  
e rgy  method turn  out to be quanti t ies of the s a m e  o r d e r  as  those given by l inea r  theory .  No di f ference  be-  
tween R** and R ,  ~ is genera l ly  obtained in a number  of c a s e s  in [5] where  the Tay lo r  ins tabi l i ty  of the flow 
between ro ta t ing  coaxial  cy l inders  is  cons idered .  

This  p a p e r  is  devoted to an energy  ana lys i s  of the s tabi l i ty  of a number  of p l ane -pa ra l l e l  flows with 
veloci ty  p ro f i l e s  having an inflection point.  An inviscid instabi l i ty  is  c h a r a c t e r i s t i c  here,  and the v i scos i ty  
tu rns  out to be the ordInary  s tabi l iz ing effect.  The magni tudes  of R ,  ~ a r e  compara t i ve ly  low and, hence, it 
can be expected a p r i o r i  that  the energy  e s t ima te s  of the c r i t i ca l  Reynolds numbers  will not differ  rad ica l ly  
f r o m  the r e su l t s  of l i nea r  ana lys i s .  The va lues  of R ,  ~ were  t h r e e -  to fourfold g r e a t e r  than the co r r e spond-  
ing values  of R** for  a num ber  of a r t i f i c i a l  p ro f i l e s  in [6]. 

An energy  s tabi l i ty  ana lys i s  f i r s t  p e r f o r m e d  by O r r  [7] and given a foundation by Serr in  [8] consis ts  of 
the fact  that the equation for  the ene rgy  of an a r b i t r a r y  pe r tu rba t ion  is  considered.  In the v i scous  fluid case  
it is  

The v a r i a b l e s  a r e  given he re  in d imens ion less  form,  U i and v i a r e  the components  of the fundamental  
ve loc i ty  f ield and the pe r tu rba t ion  field, r e spec t ive ly .  In tegra t ion  is ove r  some c h a r a c t e r i s t i c  vo lume on 
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whose su r face  the veloci ty pe r tu rba t ions  vanish.  It  is f u r t h e r m o r e  a s sumed  that v i is not genera l ly  a solu- 
tion of the equation fo r  the per turba t ions ,  but is some a r b i t r a r y  veloci ty  field sat isfying the mentioned bound- 
a ry  conditions and the continuity requ i rement  

Ov~ / ~x~ = 0 

Such a field is  cal led a t r i a l  field. Ser r in  showed that  if R is  l e s s  than a definite quantity then 0 E/0  t 
< 0 for  any t r ia l  veloci ty field. Under  these  conditions the energy  of any per turba t ion  will dec rea se  mono-  
tonely with t ime .  The purpose  of the energy ana lys i s  is  to de te rmine  the l eas t  Reynolds number  R** for  
which 0E/0t  will  f i r s t  van i sh  fo r  some t r i a l  f ield (or some t r i a l  f ields).  In other  words ,  find the R for  which 

max O E / Ot = 0 
v i 

Xeor R= R** the energy  of an a r b i t r a r y  per turba t ion  will d iminish s t r i c t ly  monotonely,  with the excep-  
tion of some t i m e s  when 0E/0 t  = 0. The E u l e r - L a g r a n g e  equations fo r  this  var ia t iona l  p r o b l e m  a re  

Avi = n_ (oe~ ou~ ~ v 0~ 0~ = 0 (1.2) 
2 ~ o~ + - ~ ( /  ~ + ~ i '  0%-5 

Here  go is  a Imgrange mul t ip l ie r  which is  the analog of the hydrodynamic  p r e s s u r e .  

2. Turning  to the case  of a plane channel and pe r fo rming  a F o u r i e r  t r ans fo rma t ion  in the coordinates  
x and z (the d i rec t ion  of the x axis  a g r e e s  with the s t r e a m  direction),  we obtain a n  eigenvalue p rob l em in R 

u "  - -  k~u = 1/2 R U ' v  + i~O,, v # _ k~v = 1i~ R U ' u  + ~'  

w" - -  k~w = i~, (--i ~<y~t) (2.1) 

~ u  + i~w + v" = 0 (u (:t: i) = v (~: i) - w C~ t) = O) 

Here  u, v, w, h a r e  (x, y, z) components  of the F o u r i e r  t r a n s f o r m s  of vi and go; a,  /L k a r e  the x and z 
components  of the wave vec t o r  and i ts  modulus, respec t ive ly ,  and the p r i m e  denotes different ia t ion with r e -  
spect  to y. It  i s  convenient  to reduce the s y s t em (2.1) to one equation. Introducing the angle 0 between the 
ma in  flow veloc i ty  vec t o r  and the per turba t ion  wave v e c t o r  (hence a = k  cos 0, ~ = k  sin 0), we obtain 

" k~R~sin ~" 0 U'u 0 

(2.2) 
v = v '  = v . . . .  - -  2k~v" ---= 0 at y = -[- 1 

Let us  l i s t  some useful  p r o p e r t i e s  of  the p rob lem.  

1. The re  exis t  only r ea l  e igenvalues  of R. In o r d e r  to see  this,  it i s  sufficient to mult iply the f i r s t  
th ree  equations in (2.1) by u*, v*, w*, r e spec t ive ly  (here the a s t e r i s k  denotes the complex  conjugate), to add 
them, and in tegra te  with r e s p e c t  to y ove r  the whole in te rva l .  

2. In addition to the eigenvalue R anil the eigenfunction v there  a lso  ex is t s  the eigenvalue - R w i t h  the 
eigenfunetion v*. In o rde r  to see  this, it is sufficient to take the complex  conjugate in (2.2). It t he re fo re  is 
meaningful  to speak  only of seeking the min imum of the absolute  value of the eigenvalue R. 

3. It  i s  sufficient  to study the behavior  of R in the quadrant 0 -  0-<1/2 Ir (o~> 0, fl> 0), since it is  seen  
f r o m  (2.2) that  a change in sign of 0 as well  as  a 7r change in 0 with a subsequent complex  conjugate of (2.2) 
will r e su l t  in the v e r y  s a m e  spec t r a l  p rob lem.  

4. F o r  k<<l the e igenvalues  a r e  R ~ l / k .  This  can be seen by introducing 1R+ = k R  and then neglecting 
t e r m s  containing k in (2.2). 

5. The case  k>>l m e r i t s  m o r e  detai led discuss ion.  Making the t r an s fo rma t ion  R = k R  +, y+ =ky, and 
then allowing k to tend to infinity, we obtain f r o m  (2.2) 

i . d ~ 2 -J--2--~+,V+)]+ R+2sin~ OU ' v  0 + +-~ 

v+ = v+' = v+" - -  2v+" = 0 at y+ = ~ oo (2.3) 

v+ = v (y+), U+ = U (y+) 

If the eigenvalue p r o b l e m  (2.3) has  non- t r iv ia l  solutions,  then R.~ k asympto t ica l ly  for  k>>l. However,  
in some  ca se s  (2.3) has only a t r iv ia l  solution and the absolute value of R i n c r e a s e s  more  rapidly with the 
growth of k than accord ing  to a l i nea r  law. 
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The l a s t  two p r o p e r t i e s  indicate that R reaches  a m in imum for  k ~  1, i .e. ,  when the wave number  is  
on the o rde r  of the r ec ip roca l  cha rac t e r i s t i c  d imension of the p r o b l e m  (moderate  values of U' a r e  in mind).  

3. The eigenvalues  a r e  computed numer ica l ly  in the domain k ~ 1 until R becomes  an asympto t ic  de-  
pendence fo r  sma l l  and l a rge  k. F o r  l a rge  R a smal l  p a r a m e t e r  a p p e a r s  in the highest der iva t ive  in (2.2), 
which r e su l t s  in the diff icult ies c u s t o m a r y  in such cases .  Although the energy  e s t ima te s  R** a r e  c o m p a r a -  
t ively  smal l ,  as  a rule, it should be kept in mind that there  is  an R 2 t e r m  in (2.2). F o r  a detai led spec t r a l  
ana lys i s  it is  genera l ly  des i rab le  to have a un ive r sa l  numer ica l  method sui table for  both smal l  as well  as  
l a rge  R. The dif ferent ia l  tkc tor iza t ion  method sa t i s f i e s  these  conditions [9]. P e r f o r m i n g  a g r ea t  number  of 
eigenvalue computat ions on an e lec t ronic  compute r  demands the se lec t ion of an economica l  : ac to r iza t ion  
scheme.  The s tandard  modif icat ion [9] r e su l t s  for  (2.2) in ve ry  awkward r ight  s ides  in the s y s t e m  of equa-  
tions for  the fac tor iza t ion  coeff icients .  M . A .  Gol 'dshtik and V. A. Sapozhnikov proposed  the  following ap-  
p roach  to a p rob l em  of s i m i l a r  nature .  The fac tor iza t ion  method is  not r e la ted  to the kind of boundary con- 
ditions, but is found f r o m  the demand fo r  g r e a t e s t  s impl ic i ty  in the s y s t e m  of different ia l  equations for  the 
fac tor iza t ion  coeff ic ients .  The init ial  data fo r  this s y s t e m  a r e  obtained by using integrat ion of the initial  
l i nea r  equation in a sma l l  in te rva l  of boundary  points.  These  a s sumpt ions  a r e  rea l i zed  as  follows in appl i -  
cation to (2.2). 

Let  us introduce the function 

By vi r tue  o: the boundary  condit ions (2.2) ~ (* 
lat ionship 

tt  is  

2 d a 
- (3.:) 

1) = 0. Let us  define the fac tor iza t ion  scheme  by the r e -  

=/A21 A22 A23///2, 

We obtain the s y s t e m  of different ia l  equations 

(3.2) 

fo r  Aij by different iat ing (3.1) and using (2.2) and (3.1). 

All"  = : /2RU'A~I  - -  A u A : 3  + z/2i(zRU" - -  k~ 

Az~' = 1/2RU'A2~ - -  A n - -  A,~Aza - -  i ( zRU'  

Aza' = I/2BU'A~8 --  AI~ --  A:3 ~ -Jr- 2k~ 

A2 I, = A~ 1 _  A:zAaa ' A2 ~, = A3 ~ _ A~ I _  Az~A2a (3.3) 

A~3" ~ A ~  - -  A ~  - -  A I a A 2 s  

A~:' = k~A~z - -  AIIAaa - -  z / 2 ~ R U '  

A32' = k~A~2 - -  Asz  - -  A]~A3a, A~3' = k2A~8 - -  A3~ - -  AzaAaa 

The Cauchy p r o b l e m  is  cons idered  fo r  the s y s t e m  (3.3). The init ial  conditions nea r  the boundary points 
a r e  de te rmined  by using (2.5) and (2.2). Denoting the r e su l t s  of in tegrat ing (3.3) f r o m  one boundary point by 
the subsc r ip t  plus below, and f r o m  the other  by the subsc r ip t  minus,  we obtain the c h a r a c t e r i s t i c  equation 
fo r  R: 

F(R) ~- det (A+--A_) = 0 

a t  any inner  point of the in terval  (--1,1). In a number  of c a se s  it i s  useful  to se lec t  the root  of the equation 
U' (y) = 0 as  such a point if  it l i es  within the in terval ,  s ince this point is the analog of the c r i t i ca l  point in the 
l inea r  theory  of hydrodynamic  stabil i ty.  F o r  s y m m e t r i c  U prof i l es  it is  sufficient  to cons ider  s y m m e t r i c  
and a n t i s y m m e t r i c  solutions of (2.2). In this case  the c h a r a c t e r i s t i c  equation is 

F (R) ~-  A32 (Al:A23 - -  A13A2: ) = 0 

on the channel axis  y = 0. F o r  the a n t i s y m m e t r i c  solutiofls A32 = 0, and the expres s ion  in the pa ren theses  van-  
i shes  in the s y m m e t r i c  case .  

F o r  some  va lues  of k and 0 the l eas t  pos i t ive  root of F (R) = 0 is  found init ially,  and then a sufficiently 
compact  m e s h  R(k, 0) is cons t ruc ted  by continuity, and the magnitude and posi t ion of the min imum of this ~ n c -  
t i ona re  de te rmined .  If need be, these  p a r a m e t e r s  a r e  refined. The numer i ca l  ana lys i s  did not d isc lose  any 
in te rsec t ion  of the spec t r a l  b ranches  fo r  the cons idered  flows. 
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The computations were  ca r r i ed  out on a BESM-6. The eigenvalues were  found to p r e sc r ibed  accuracy  
(three significant f igures) .  

A computation of Couet te-Poiseui l le  flow stabili ty 

U =  ( i  - -  A) (t - -  y2) + A y  

was mainly used to check the numer ica l  method used. In the Poiseui l le  flow case  (A = 0) the calculations 
yielded R** =49.9, k ,  = 2.04,which ag rees  with the resu l t s  obtained e a r l i e r  [2], while R** = 20.6, k ,  = 1.56 was 
found for  Couette flow (A=I),  as in [4]. The dependences R,(A) (curve 1) and k,(A) (curve 2) a re  r ep r e -  
sented in Fig. 1. The energy  es t imates  of R,  diminish as A grows, in  contras t  to the l inear  theory resul ts  
[10] (for small  A an inc rease  in R ,  still  holds; however,  it is quite insignificant).  In all  the cases  consid- 
e r e d h e r e  andbelow, the min imumR is achieved fo r  0 = ~r/2, i.e.,  the per turbat ions  whose wave vec tor  is pe r -  
pendicular  to the main flow veloci ty vec tor  a re  most  "dangerous."  No analytic proof  of this fact  has been 
obtained, however.  

4. The flow of a v iscous ,  heat-conducting fluid between ve r t i ca l  para l le l  planes heated to different  t em-  
pe ra tu re s  is an example of a p lane-para l le l  nonsymmetr ic  flow with an inflection in the veloci ty  profi le .  
The veloci ty  prof i le  has the fo rm  

U = y - - y  ~ 

If the Prandt l  numbers  a re  small,  it is possible to l imit  oneself  to purely  hydrodynamic per turbat ions  
in the stabili ty analysis .  Within the scope of l inear  theory  this analysis  has been ca r r i ed  out in [11], and 
l a t e r  in [12]. The cr i t ica l  p a r a m e t e r s  a re  R ,  ~ 82, ~ , = k , = 1 . 3 2 .  

The energy analysis  yields  R**= 29, f l ,=k ,=  1.8. If only two-dimensional  per turbat ions  a re  examined, 
then R**=58,  a , = l . 9 .  The level  l ines R(k, 0)=const  a re  p resen ted  in Fig.  2. Here  the a s t e r i sk  denotes the 
posi t ion of minimum R. The level  l ines (curves 1, 2, 3, 4) co r respond  to R=35, 40, 50, 80. The level  line 
picture  is typical  for  al l  the flows considered herein.  
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The c r i t i ca l  numbers  R ,  ~ and R** di f fer  by l e s s  than threefold,  while the di f ference fo r  p r e s s u r e  flow 
is  s eve ra l  o r d e r s  of magnitude.  The exper imenta l  m e a s u r e m e n t s  [12] which were  conducted fo r  the Prandt l  
numbe r  P = 0.71 yielded R,  =91 (1 d: 0.1), k ,  = 1.37, which somewhat  exceeds  the l inear  theory  resu l t s .  This 
can be assoc ia ted  with e r r o r s  in the tes ts .  

Still s m a l l e r  d i sc repanc ies  between R** and R,  ~ a r e  obtained for  jet type flows. 

Let us  examine the s tabi l i ty  of the flow 

U = l - - th2y  ( - - a ~ y ~ a )  (4.1) 

The veloci ty  prof i le  (4.1) is  a s e l f - s i m i l a r  Schlichting solution for  a plane submerged  jet.  As before,  
the adhesion conditions at y =  ~-a a r e  the boundary conditions fo r  the per tu rba t ions  here .  This  flow, which 
we provis iona l ly  call  a jet in a channel, is cons idered  he re  as  the model  of a s y m m e t r i c  flow with an inf lec-  
t ion point in the veloci ty  profi le .  As is  seen f r o m  (4.1), the Reynolds number  is defined by means  of the jet  
halLvidth and the m a x i m u m  veloci ty.  

A number  of r esu l t s  for  the case  a = 6 is p resen ted  in Fig. 3. Curve 1 is  the dependence R(k) com-  
puted by an energy method for  0 = 1/2~r. Curve 2 co r r e sponds  to plane pe r tu rba t ions  (0 = 0). The dependence 
R(k) fo r  0 = 1/21r of the next spec t r a l  branch (an t i symmetr ic  pe r tu rba t ions  in v) is p ic tured  by the curve  3. A 
neut ra l  curve  (curve 4) computed by l inear  s tabi l i ty  theory  is  p resen ted  in Fig.  3 for  compar i son .  It c o r r e -  
sponds to pe r tu rba t ions  with 0 = 0; by v i r tue  of the Squire t heo rem [1], they a r e  mos t  dangerous  in the l inear  
case .  Let us  p re sen t  va lues  of the c r i t i ca l  p a r a m e t e r s  fo r  compar i son .  The energy  method (0 = 1/2r, abso-  
lute minimum) yields  R** = 3.77 k ,  = 0.327, the energy  method (0 = 0), R ,  = 4.75, k ,  = 0.345, and Hnear  theory  
(O = 0) ,R,  = 6.25, k ,  = 0.46. 

The asympto t ic  behav ior  of R(k), de te rmined  by the energy  method, has the genera l  f o r m  for  all  the 
spec t r a l  b ranches  cons idered  and fo r  al l  0. In conformi ty  with p rope r ty  4 (see Sec. 2), R is  inverse ly  p ro -  
por t ional  to k fo r  smal l  k, while R i n c r e a s e s  m o r e  rapidly  fo r  l a rge  k than according  to the l inear  law. Here  
R is  approx imate ly  propor t iona l  to k 2. The min imum value of R fo r  a n t i s y m m e t r i c  per turba t ions ,  o r  6.1, is  
reached  fo r  k= 0.4, i .e. ,  for  a r a t h e r  l a r g e r  wave number  as  compa red  with the case  of s y m m e t r i c  p e r t u r b a -  
t ions.  F o r  l a rge  k the di f ference between the Reynolds number s  fo r  s y m m e t r i c  and a n t i s y m m e t r i c  p e r t u r b a -  
t ions tends to ze ro .  This  indicates  that the shor twave per tu rba t ions  differ  f r o m  ze ro  in p r ac t i ce  only in 
some  subdomain of the in te rva l  - 1 - y - <  1, and this subdomain does not include the point y = 0, so that the s y m -  
m e t r y  or  a n t i s y m m e t r y  conditions a r e  inessent ia l  on the axis .  

Computat ions showed that the energy  e s t ima te s  of the c r i t i ca l  Reynolds number  depend substant ia l ly  
on the rat io  between the channel width and the jet  width a, and the Reynolds number  tends to ze ro  as  a --,-~. 
P r e s e n t e d  in Fig. 4 is  the dependence R ,  (a) (curve 1) in the band 5-<a-< 100. F o r  a > 10, the re la t ionship  
R,  ~ a -~ is sa t i s f ied  approx imate ly .  It i s  c h a r a c t e r i s t i c  that the dependence of the c r i t i ca l  wave number  
on a curve  (curve 3) has the f o r m  k ,  ~ 1/a ,  i .e. ,  the wave number  computed over  to the halfwidth of the chan-  
nel r e m a i n s  constant  and approx ima te ly  equal to 2.43 as the jet thins out,while the Reynolds number  aR  com-  
puted over  the channel halfwidth grows as the jet  thins.  F o r  sufficiently l a rge  wave numbers ,  the eigenvalue 
R is  a l ready  independent of the channel width. St ra t i f ica t ion of the cu rves  R(k) with r e spec t  to a is not ob- 
s e rved  in the cons idered  band for  k > l .  This  indicates  that the subdomain where  the shor twave p e r t u r b a -  
t ions a re  different  f r o m  zero  in p r ac t i ce  does not include the boundary points but is apparent ly  concent ra ted  
in the neighborhood of the inflection point of the veloci ty  prof i le .  But the c r i t i ca l  numbers  R ,  co r r e spond  
to too smal l  k in this case  and depend on the channel width. 

Since the c r i t i ca l  pe r tu rba t ions  " sense"  the channel walls ,  i .e. ,  fo r  them it is e s s e n t i a l a t w h a t d i s t a n c e  
the boundary conditions a r e  formula ted ,  then the nature  of the boundary conditions should v is ib ly  a lso  affect  
the re sults.  

It  is  in te res t ing  to examine a jet  in unbounded space,  and even m o r e  so since a number  of l inea r  s tabi l -  
ity theory p a p e r s  has been devoted to it. The s e l f - s i m i l a r  Scblichting solution fo r  a jet  

l - - t h  2a ( y ~ - - a )  
U ( y ) ~  i - - t h e y  ( - - a ~ y ~ a )  

i - - t h  ~a (y>la) 

i s  a lso  taken as  the bas i s  he re .  
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The boundary conditions are  posed at infinity and reduce to the demand for  damping. They can be r e -  
f e r r e d  to y= •  For  IY I >a U' =0 in the sys tem (2.1), by eliminating h,it is possible to a r r i ve  at 

ict /yr 
v"" - -  2 k  ~ v"  ~- k ~ v  : O, u"  - -  k ~ u  ---- ~ ( v  - -  k ~ v  ') (4.2) 

It is easy  to see that three  l inear ly  independent solutions of (4.2) a re  found which damp out at infinity. 
F o r  example,  we have fo r  y < - a  

v : e ~, u --- 0 (4.3) 

~:* y e ~  (4.4) v : y e  ~v, u ~ ~ -  

v : O, u = e ~v (4.5) 

These  fundamental solutions can be used to calculate  the factor izat ion coefficients  Aij, by continuing 
them within the interval  in conformity with (2.2) and by solving (3.2) at the point y = - a + e ,  where  e is some 
small  quantity (see See. 2). 

P resen ted  in Fig. 4 a re  the dependences R, (a)  (curve 2) and k , ( a )  (curve 4) in the case  of a f ree  jet. 
The c r i t i ca l  Reynolds numbers  a r e  approximately one and one-half  t imes  less  than for  a jet in a channel. 
As before  the quantities k .  dec rease  proport ionately  to a, where  k ,a  = 1.24. It is charac te r i s t i c  that the r e l -  
at ive difference between the resu l t s  fo r  R,  and k fo r  a f ree  jet and a jet in a channel does not tend to ze ro  
a s  a ---~ oo .  

The l inear  analysis  also discloses  a dependence of R,  ~ on a. 

Thus, R,~ 7.5 is  obtained in [13] for  a =3, and R ,  ~ =4 in [14] fo r  a = 6. The energy  method yields R** = 
3.9 for  a =3, and R**= 2.2 for  a = 6 in these cases .  

On the basis  of the analysis  conducted, it can be concluded that; fo r  a number of veloci ty  prof i les  hav- 
ing an inflection point, the c r i t ica l  Reynolds numbers  computed by the energy method a re  less  than the co r -  
responding quantities R,  ~ by not more  than two- to threefold.  There fore ,  in these cases  the energy method 
in combination with l inear  theory pe rmi t s  obtaining es t imates  of the cr i t ica l  Reynolds numbers  which a re  
sa t i s fac tory  for  a number  of engineering applications. 

The authors  are  gra teful  to M. A. Gol'dshtik fo r  attention to the r e sea rch .  
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